基于GNSS 掩星资料的风云卫星微波载荷 产品质量验证与分析

高 超¹,何杰颖²,胡艳冰³,柳聪亮^{2,4}

(1.北京跟踪与通信技术研究所,北京100094; 2.中国科学院国家空间科学中心 微波遥感技术重点实验室,北京
100190; 3.北京航空气象研究所,北京100085; 4.中国科学院国家空间科学中心 天基空间环境探测北京市重点实验室,北京100190)

摘 要:聚焦新一代国产极轨气象卫星微波载荷和全球导航卫星系统(GNSS)掩星临边观测的探测机理,及其各 自仪器的性能指标和在轨运行的特点,利用2019年1月1日到12月31日的全球数据,开展基于GNSS掩星资料的风云 气象卫星微波观测亮温对比和反演廓线产品质量检验研究。在匹配数据时间分辨率为30min和经纬度分辨率为0.5° 的情况下,亮温偏差小于5K,大气温湿度探测精度分别为1.92K和22.8%,同时分析了2019年青藏高原地区大气温 湿度的时空分布规律。结果表明:风云气象卫星微波辐射计具有全球全天候探测大气温湿度的功能,在近地面具有丰 富的反演数据,而对于GNSS掩星探测资料,3km以上探测精度优于微波湿度计,近地面数据较少,两者联合,既可以 互相补充和验证,又能以青藏高原为例,分析长时间序列气象和气候数据,为后续的气候研究提供基础数据集。

关键词: 气象卫星; 微波载荷; 掩星; 大气温湿度; 青藏高原 中图分类号: P 413.2 文献标志码: A DOI: 10.19328/j.cnki.2096-8655.2021.05.015

Quality Verification and Analysis of Feng Yun Satellite Microwave Payload Products Based on GNSS Occultation Data

GAO Chao¹, HE Jieying², HU Yanbing³, LIU Congliang^{2,4}

(1.Beijing Institute of Tracking and Communication Technology, Beijing 100094, China; 2.Key Laboratory of Microwave Remote Sensing, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China; 3.
Beijing Institute of Aeronautical Meteorology, Beijing 100085, China; 4.Space-Based Space Environmental Detection Beijing Key Laboratory, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China)

Abstract: On sounding mechanism comparison of cross-track and Global Navigation Satellite System (GNSS) occultation observation of microwave payload onboard Feng Yun polar-orbiting meteorological satellites, as well as their respective performance indicators on orbit, this paper carried on calibration/validation and quality evaluation for microwave radiometer based on GNSS retrievals from January 1 to December 31, 2019. Under the time window of 30 minutes and the longitude and latitude threshold of 0.5 degrees, the brightness temperature deviation is better than 5 K, and the retrieving accuracy of temperature and humidity are 1.92 K and 22.8%. Then the temporal and spatial distribution of atmospheric temperature and humidity of the Qinghai-Tibet Plateau in 2019 are analyzed. The results show that the Feng Yun Meteorological Satellite Microwave Radiometer has the ability of providing global all-weather temperature and humidity profiles, and it has abundant inversion data near the ground. For occultation, the detection accuracy is better than that of microwave radiometer above 3 km, with less data near ground. The combination of the two can not only complement and verify each other, but also use the Qinghai-Tibet Plateau as an example to analyze long-term series of meteorological and climatic data to provide basic datasets for further climate research.

Key words: meteorological satellite; microwave radiometer; Global Navigation Satellite System (GNSS) radio occultation; atmospheric temperature and humidity profile; Qinghai-Tibetan plateau

收稿日期:2021-02-24;修回日期:2021-06-09

作者简介:高超(1976—),男,博士,主要研究方向为卫星资料质量控制。

通信作者:何杰颖(1984—),女,博士,主要研究方向为星载微波遥感仪器设计与定标。

0 引言

青藏高原位于我国西部地区(北纬25°~40°,东 经75°~105°),作为全球气候系统中的一个敏感地 区,对全球气候变化的响应具有敏感性^[1-2]。目前, 青藏高原地区地面探测站点稀少,观测资料缺乏, 限制了该地区气候变化研究以及短时气象预报的 准确性,是影响全球气候变化研究的一个不利 因素。

风云三号(FY-3)C/D星搭载的新一代微波湿度计(MWHS-II)^[3]和微波温度计(MWTS-II)^[4]在 FY-3A/B星的基础上,探测性能方面有较大改进, 微波湿度计在原来的150 GHz和183.31 GHz探测 通道的基础上,增加了89 GHz和118.75 GHz探测 通道。其中,118.75 GHz是世界首次在极轨气象卫 星上使用,包含了118.75 GHz附近的8个氧气吸收 通道,用来获取大气不同高度的温度分布数据。 183.31 GHz为中心的探测通道由原来3个增加为5 个探测通道,工作在水汽吸收频段,用来获取大气 层不同高度的湿度分布的数据。

大气窗区150 GHz和89 GHz通道还可用来探测云中含水量和强降雨、卷云等大气参数。微波 温度计由设置在50~60 GHz氧气吸收带的4个通 道增加为13个通道,其权重函数峰值高度均匀地 分布在从地面到大气上层2 HPa的整层大气,通 道中心频率的设置越接近氧气吸收带中心,其权 重函数峰值高度越高。窗区通道函数峰值位于地 表,可以用来获取地表信息。本文星星标定选取 微波湿度计见表1,微波温度计通道见表2。多星 多通道联合组网工作,可有效提高观测性能和观 测时效^[58]。

全球导航卫星掩星探测仪(GNSS Occultation Sounder, GNOS)是风云三号 C/D星主要载荷之 一,可接收 GPS 和北斗掩星信号进行大气临边观 测。它利用 GNSS 掩星观测数据反演获得大气折 射率、温度、压力和湿度廓线等物理参数,以及电离 层电子密度廓线和电子总含量等数据^[9],其具有高 精度、高垂直分辨率、长期稳定等优点。但 GNOS 掩星数据产品水平分辨率较差,掩星事件的经纬度 具有一定的随机性,且数据量有限。国际上有多个 GNSS 掩星探测任务,掩星数据处理链较长,从原始 数据预处理至信号附加相位延迟之后,可得到弯曲 角、折射率和大气温度、湿度等不同级别的产品。

表1 微波湿度计通道特性参数	
----------------	--

Tab.1 Channel characteristic parameters of MWHS-II

序号	中心频率/GHz	极化	带宽/MHz	灵敏 度/K	定标精 度/K
1	89.0	V	1 500	1.0	1.3
2	118.75 ± 0.08	Н	20	3.6	2.0
3	118.75 ± 0.20	Н	100	2.0	2.0
4	118.75 ± 0.30	Н	165	1.6	2.0
5	118.75 ± 0.80	Н	200	1.6	2.0
6	118.75 ± 1.10	Н	200	1.6	2.0
7	118.75 ± 2.50	Н	200	1.6	2.0
8	118.75 ± 3.00	Н	1 000	1.0	2.0
9	118.75 ± 5.00	Н	2 000	1.0	2.0
10	150.0	V	1 500	1.0	1.3
11	183.31 ± 1.00	Н	500	1.0	1.3
12	183.31 ± 1.80	Н	700	1.0	1.3
13	183.31 ± 3.00	Н	1 000	1.0	1.3
14	183.31 ± 4.50	Н	2 000	1.0	1.3
15	183.31 ± 7.00	Н	2 000	1.0	1.3

表2 微波温度计通道特性参数

Tab.2 Channel characteristic parameters of MWTS-II

CH♯	中心频率/GHz	带宽/GHz	极化	灵敏 度/K	定标精 度/K
1	50.300	0.180	QH	1.20	1.5
2	51.760	0.400	QH	0.75	1.5
3	52.800	0.400	QH	0.75	1.5
4	53.596	0.170	QH	0.75	1.5
5	54.400	0.400	QH	0.75	1.5
6	54.940	0.400	QH	0.75	1.5
7	55.500	0.330	QH	0.75	1.5
8	57.290 344(fo)	0.330	QH	0.75	1.5
9	$fo\pm 0.217$	0.078	QH	1.20	1.5
10	fo $\pm 0.322\ 2\pm 0.048\ 0$	0.036	QH	1.20	1.5
11	fo $\pm 0.322\ 2 \pm 0.022\ 0$	0.016	QH	1.70	1.5
12	fo±0.322 2±0.010 0	0.008	QH	2.40	1.5
13	fo $\pm 0.322\ 2 \pm 0.004\ 5$	0.003	QH	3.60	1.5

无线电掩星气象卫星应用设施(ROM SAF)是 EUMETSAT 之下的分散处理中心^[10],负责对 Metop卫星的GRAS无线电掩星(RO)数据和其他 任务的无线电掩星数据进行业务处理。通过精确 计算Metop和GNSS卫星的位置和速度,可以将测 得的时间延迟转换为射线路径的弯曲角度,再将其 转换为大气中的温度、压力和水蒸气含量的值,从 而得到从地面到大约50 km的功能的大气廓线。

鉴于后续风云气象卫星均计划搭载微波载荷 和掩星载荷,因此,本文立足于2种体制载荷的星星 标定算法和产品一体化验证,为后续仪器研制和数 据应用提供参考。

1 探测原理分析

1.1 基于掩星资料的微波载荷标定机理

定标精度不仅反映了微波辐射计的研制水平 的高低,而且也影响微波辐射图像的解读和判读的 准确度,定标是实现定量化微波遥感的前提。微波 辐射计仪器定标是标定微波辐射计输出(电压或电 压数码)与输入噪声温度之间的定量关系的过程, 在轨定标采用星载定标体和冷空作为参考源。通 过近年来的研究发现,同一微波仪器性能会有衰减 性,不同卫星代际间的微波仪器存在不一致性,不同体制对同一大气场景观测的结果也不尽相同。

星星定标是衡量微波辐射计观测资料质量的 一个重要环节。基于多星跨平台观测数据,运用 GNSS无线电掩星探测资料的微波辐射观测基准具 有可行性。但由于GNSS无线电掩星和微波辐射 计工作机理和观测几何不同,信息来源不同,观测 的地物目标也不同,星间标定技术涉及基准GNSS 无线电掩星资料的准确性和稳定性、时空匹配、误 差校正、观测能量比对、参数反演和误差来源分 析等。

被动微波遥感观测资料的空间分辨率较低,通 常是几十公里,因此,在一个被动微波像元内,地表 空间范围内往往包含多种不同的地物类型,这种视 场内地表类型的变化称为地表的空间异质性。而 GNSS无线电掩星是临边大气探测,其数据反演主 要基于GNSS卫星和LEO卫星钟记录的时间,以及 卫星星历提供的GNSS卫星和LEO卫星的位置和 速度等轨道信息,计算得到的GNSS信号的附加相 位和弯曲角。因此,GNSS无线电掩星数反演无需 定标,与地表空间范围的不同的地物类型无关。

1.2 微波探测仪探测原理

微波能够穿透云雨,对大气温度、水汽、云中液 态水、云冰、降水和海面风速等地球物理参数敏感, 工作在微波波段的大气探测载荷能够为数值天气 预报和气候研究提供有用的信息。根据辐射能量 传输方程,卫星所测的辐射强度受到大气层温、湿 度的影响,通常用一个权重函数来描述不同高度大 气温湿度对辐射强度的贡献,权重函数随着波长 (通道)而变化,从而探测大气温湿度廓线^[11]。单一 通道的辐射值包含了一定高度范围的温度湿度信 息,不同通道对应着不同高度的大气温、湿度的贡 献,多通道的辐射强度(通常用所谓的亮温来度量) 综合使用可以得到大气温湿度随高度的变化。进 而可全天候获取大气温度、湿度垂直廓线、降雨等 重要大气参数,为气象预报、气候变化研究和灾害 监测等提供重要数据资料。

如图1所示,针对扫描式微波辐射计,不同像元 的入射角呈规律性变化,且均已知。像元大小根据 观测几何分析可知,中心星下点为圆形,分辨率最 高,随着角度的增加像元逐渐增大,演变为椭球形, 分辨率降低,最边缘像元椭球面积最大,角度最大, 分辨率也最低。交轨扫描微波辐射计在每个扫描 周期内,固定观测冷空和热源,以及对地观测像元 面积不等的对地目标,窗区通道以地表探测为主, 用于探测地表和海表信息,吸收通道以大气探测为 主,产品包括温湿度廓线和降水等。由于大气辐射 传输原理和常规辐射计通道设计规律,目前廓线反 演问题为不适定方程的求解,结果不唯一,在实际 廓线反演过程中,多采用半物理半统计的求解方 法,寻找局部最优,因此,反演产品存在一定误差。

1.3 掩星探测原理

全球定位系统(Global Positioning System, GPS)卫星高度约20200km,其发射的无线电电磁波 经过地球大气层时会受大气折射作用而弯曲^[12]。放置 于低轨(Low Earth Orbit, LEO)卫星(<1000 km, 如极轨气象卫星)的GPS接收机可利用无线电掩星 技术探测出总的弯曲角,去除电离层对弯曲角的影 响后,利用弯曲角与中性大气折射率之间的对应关 系可求出折射率。由于大气折射率主要是大气温 度、湿度的函数,因此经过进一步的处理,可得到大 气的温湿度信息,如图2所示。这一技术的主要特 点是垂直分辨率高,无需定标,全天候探测,可与传 统的垂直对地遥感相互补充。

GNSS 无线电掩星探测技术具有高垂直分辨 率、高精度、全球覆盖、自定标、长期稳定、全天候和 成本低廉等优势,是一种能提供全球均匀分布、高 垂直分辨率温度、湿度、压强等廓线的大气监测手 段^[13-15]。GNSS 无线电掩星大气探测技术具有自定 标特性,精度主要与GNSS 掩星探测仪器的钟相 关,与其他特性关系较小,具有长期稳定性,可作为 其他大气探测方法,比如星载微波辐射计的校验 基准。

1.4 基于掩星资料产品检验涉及的技术问题

定标精度不仅反映了微波辐射计的研制水平 的高低,而且也影响微波辐射图像的解读和判读 的准确度,定标是实现定量化微波遥感的前提。 微波辐射计仪器定标是标定微波辐射计输出(电 压或电压数码)与输入噪声温度之间的定量关系 的过程,在轨定标采用星载定标体和冷空作为参 考源。通过近年来的研究发现,同一微波仪器性能会有衰减性,不同卫星代际间的微波仪器存在不一致性,不同体制对同一大气场景观测的结果也不尽相同。

星星定标是衡量微波辐射计观测资料质量的 一个重要环节。基于多星跨平台观测数据,运用 GNSS无线电掩星探测资料的微波辐射观测基准具 有可行性。但由于GNSS无线电掩星和微波辐射 计工作机理和观测几何不同,信息来源不同,观测 的地物目标也不同,星间标定技术涉及基准GNSS 无线电掩星资料的准确性和稳定性、时空匹配、误 差校正、观测能量比对、参数反演和误差来源分 析等。

被动微波遥感观测资料的空间分辨率较低,通 常是几十公里,因此,在一个被动微波像元内,地表 空间范围内往往包含多种不同的地物类型,这种视 场内地表类型的变化称为地表的空间异质性。而 GNSS无线电掩星是临边大气探测,其数据反演主 要基于GNSS卫星和LEO卫星钟记录的时间,以 及卫星星历提供的GNSS卫星和LEO卫星的位置 和速度等轨道信息,计算得到的GNSS信号的附加 相位和弯曲角。因此,GNSS无线电掩星数反演无 需定标,与地表空间范围的不同的地物类型无关。

2 数据收集和处理流程

2.1 数据收集

本文选取 2019 年 1 月至 2019 年 1 2 月的在轨微 波湿度计数据和 ROMSAF 数据的产品数据。微波 湿度计数据包括 1 级轨道亮温数据,通过算法实现 温湿度计产品数据; ROMSAF 数据为全球的事件 区域温湿度廓线。

以2019年1月为例,微波湿度计文件436个,每 个文件包含若干扫描线和不同角度的像元,质量控 制和去除边缘角度后,剩余匹配点431139个,掩星 样本36413个,每个样本是一个事件。数据具体匹 配原则为时间差小于30min,经纬度差小于0.5°,匹 配成功的数据量为80306个,每天数据量大约为 2500个,具体如图3和图4所示。通过匹配分析, 2019年1月至12月,匹配样本共计961643个,如图 5所示。

图 5 微波辐射资料和掩星事件匹配全球分布图(2019年 1月2日)

Fig.5 The global matching map of microwave radiation data and occultation event (January 2, 2019)

2.2 星星比对算法流程

在获得多星跨平台多源观测数据的基础上,针 对地物稳定目标,以GNSS无线电掩星探测资料为 基准,开展微波辐射观测星星定标。由于GNSS无 线电掩星和微波辐射计工作在不同平台上,掩星是 临边探测,微波辐射计是下视扫描观测,工作机理分 别为主动和被动,信息来源方向不同,观测的地物目 标不同,不同观测体制的时间分辨率、空间分辨率也 不同。

掩星的优势在于高垂直分辨率,不需要定标,与 地表空间范围的不同的地物类型无关,测量量与产 品具有准确的对应关系。缺点是水平分辨率差,一 般为几百公里;空间覆盖差,全球并非栅格分布,而 是事件性质的观测。而微波辐射计是被动测量的一 种探测设备,星载微波辐射计具有全球覆盖性,每天 2次全球覆盖,多星组网具有更高的回访周期,空间 分辨率为数十公里量级,在一个被动微波像元内,地 表空间范围内往往包含多种不同的地物类型,这种 视场内地表类型的变化称为地表的空间异质性。

如图 6 所示,本文将结合 2 种体制的差别和联 系,在 2 个层面上进行标定。一是对掩星产品进行 辐射传输计算,与微波辐射计亮温产品比较定标; 二是对微波辐射计进行廓线反演,与掩星产品进 行比对和定标,并为星地产品检验验证做准备 工作。

Fig.6 Technical flow of occultation product quality inspection

具体步骤如下:

步骤1 利用 GNSS 掩星数据产品和地面微 波辐射测量资料,对场景目标开展针对性的连续 观测以及控制试验观测,并且配合以上的操作步 骤来获取大气的热力学结构和地表参数的时变 特征;

步骤2 开展像元均匀性和一致性分析;

步骤3 利用国产多系列卫星数据,结合国外 同类载荷观测数据,收集多种类微波仪器观测亮温 数据,实现数据匹配和质量控制;

步骤4 对上述测试数据进行整理、分类、完善善地表相关参数模型和基于掩星资料的定标模型;

步骤5 开展星星一致性分析,并结合完善的 地表参数模型和大气校正模型,开展星地比对分 析,基于掩星资料评估星载微波辐射计在轨 性能。

如图7所示,微波亮温依据仪器指标设置而定, 本试验选取了大气氧气吸收通道116.75 GHz和 54.40 GHz,基于掩星数据的仿真亮温和微波观测亮 温一致性较好,相关系数优于0.99,偏差小于5K,如 图8所示。

occultation data and microwave observation

2.3 星地一体化产品评估

星载微波辐射计以其空间覆盖面广、时间取样 频率和水平分辨频率高、资料一致性好、经济效益 高等优点,在气候研究、天气预报等领域发挥着重 要作用。基于微波观测资料的大气温湿廓线反演 精度很大程度上取决于所建立的辐射传输模型的 精度。而GNSS无线电掩星数据产品主要包括:温 度、湿度、压强等大气廓线,上述为星地一体化中 的"星"。

而星地一体化中的"地",依据全球微波辐射稳 定性分析,选择微波辐射特性均匀、稳定的云南普 洱热带雨林和开阔海面。将掩星资料、相近时间内 相同观测区域微波载荷或国外同类卫星载荷微波 辐射值进行比对和检验,开展掩星星地一体产品质 量检验试验。首先,根据卫星轨道预报时间表,选 取卫星通过辐射校正场上空时、大气状况满足辐射 校正观测规范要求的日期时间;然后,分别在卫星 过境时,进行场地同步观测,获取卫星遥感图像资 料和用于大气辐射传输处理的所有场地同步观测 资料。

对于掩星和微波辐射计,星地一体化产品落脚 在温度和湿度廓线。利用微波辐射计测得的亮温 值来反演温湿廓线是大气探测很常用的手段,其原 理是利用在各不同频率通道测得的天空亮温值,计 算出同一时间、同一地点垂直分布的大气温湿度 数值。

比对和检验可采用均方差、相对均方差等指标,并对指标符合性和偏理性进行详细分析。

将微波反演得到的大气温湿廓线与掩星廓线 数据进行比较,主要采用3个参数衡量误差:均方 根误差 σ_{RMSE}、相对误差 Er 和偏差,它们分别定 义为

$$\sigma_{\text{RMSE}} = \sqrt{\frac{\sum_{i=1}^{N} \left(\hat{X}_{i} - X_{i}\right)^{2}}{N}}$$
(1)

$$Er = \frac{\sigma_{\text{RMSE}}}{E(X)} \times 100\%$$
 (2)

$$\sigma_{\text{bias}=} \frac{\sum_{i=1}^{N} (\hat{X}_i - X_i)}{N} \tag{3}$$

式中:X为温度向量T或湿度向量 ρ ; \hat{X} 为反演X得 到的结果;E(X)为掩星廓线数据的均值。

3 结果检验与分析

3.1 结果检验

如图9所示,针对大气温度和湿度廓线,由于大 气温度廓线相对稳定,廓线直接比对和均方差均优 于大气湿度廓线。经过对2019年匹配样本的分析, 大气温度廓线的均方差为1.92 K,大气湿度的均方 差为22.8%。通过比对发现,由于相对湿度变化较 大,反演误差与实际水汽分布有关,微波探测仪反 演结果与掩星产品相比,具有高估效果,这主要是 由于在183 GHz,对水云和冰云具有联合观测效果, 不能合理解耦造成的。

在匹配区域和时间范围内,云主要分布在距离地面 2~4 km 的高度范围内,云的分布对廓线反演结果产生了很大影响,而在无云的高层区,反演结果几乎不受影响。水云对于窗区通道影响较大,但对于氧气通道影响很小。因此,本文利用微波反演的廓线不仅用到了窗区通道,也用到了水汽和氧气吸通道,常规的星上定标方法会随着卫星平台环境温度而受影响,这正是掩星和微波资料星地标定的意义所在。

3.2 青藏高原地区结果分析

青藏高原位于我国西部地区(北纬25°~40°,东 经75°~105°),利用2019年FY-3C卫星过境时(0-4 时)MWHTS观测的亮温数据,经过掩星校正后反 演的大气温湿度廓线结果如图10和图11所示。

如图 10 和图 11 所示,青藏高原地区由于其地形的复杂和多变,青藏高原上气候本身也随地区的不同而变化很大。青藏高原地区 2014 年全年 0—4 时 反演大气温度和湿度廓线日分布如图 12 所示。青藏高原地区 2014 年全年 0—4 时大气温度和湿度廓线 等压层的日分布如图 13 所示。可见,青藏高原地区 大气温度规律呈现一定的规律性,极少出现逆温层 的情况,而相对湿度变化较大且无规律性,550 MPa 以下出现近似恒湿层,而在 550 MPa之上多出现云 层,之后相对湿度降低,这也是该区域气象资料缺乏 严重影响天气预报准确度和气候研究的主要因素。 青藏高原地区 2019 年 1—12 月大气温度廓线在 30 kPa、50 kPa和 100 kPa处的日变化规律分析图和 青藏高原地区 2019 年 1—12 月大气湿度廓线在

- 图 11 青藏高原地区 2019年1月—12月0时—4时左右大气 湿度廓线分布
- Fig.11 The distribution of atmospheric humidity profiles in the Qinghai-Tibet Plateau from January to December 2019 at around 0:00~4:00 o'clock

- 图 12 青藏高原地区 2019年 10月 0 时大气温度和湿度廓线 分布
- Fig.12 The distribution of atmospheric temperature and humidity profiles in the Qinghai-Tibet Plateau at 0 o'clock in October, 2019

30 kPa、50 kPa和100 kPa处的日变化规律分析,如图14所示。

Fig.13 The daily distribution of the atmospheric temperature and humidity profile of isobaric layer in the Qinghai-Tibet Plateau at 12 o'clock in October, 2019

Fig.14 Variance analysis of the temperature and humidity profile of the Qinghai-Tibet Plateau in October 2019

通过分析 2019年1—12月份卫星过境时刻的 大气温湿度廓线在不同气压层的分布可知,50 kPa 和 30 kPa处,大气温度呈现明显的季节变化,夏季 呈现高温峰值,且具有高度一致分布曲线,说明大 气环流变化比较均匀,而在地表100 kPa附近,大气 温度高温持续时间较长,占据全年一半以上,且分 布在春末一夏季一秋初,但受限于地理位置和气 候,温度全年较低。而大气水汽分布则呈现不同的 规律,夏季由于高温,湿度较大,1月尽管温度低,但 相对湿度却呈现高值状态。50 kPa大气湿度与100 kPa呈现类似的分布,但30 kPa大气湿度变化与季 节无明显联系,因为在30 kPa处,饱和水汽压和温 度降低,受地表热辐射的影响较小,大多取决于实 际的温度、压强、风等热力和动力因素。

4 结束语

本文针对地物稳定目标,以GNSS无线电掩星 探测资料为基准,开展微波辐射观测星星定标。进 而,利用 FY-3C/MWHTS 实测的 2019 年亮温数 据,反演青藏高原地区大气温湿度廓线,并结合匹 配的掩星反演的廓线数据。联合分析了青藏高原 地区大气温湿度的时空分布规律,着重分析了 2019 年 10月 12 时的大气温湿度廓线在不同等压层的分 布情况,提供了该时间段青藏高原气候变化分析的 连续资料,为我国极轨气象卫星输出青藏高原地区 三维大气温湿度廓线产品提供了参考和论证^[16]。

参考文献

- [1]刘强,杜今阳,施建成,等.青藏高原表层土壤湿度遥感 反演及其空间分布和多年变化趋势分析[J].中国科 学:地球科学,2013,43(10):1677-1690.
- [2] 马耀明,姚檀栋,王介民.青藏高原能量和水循环试验 研究:GAME/Tibet与CAMP/Tibet研究进展[J].高 原气象,2006,25:344-351.
- [3] ZHANG S W, LI J, WANG Z Z. Design of the second generation microwave humidity sounder (MWHS-II)

for Chinese meteorological satellite FY-3 [C]// IEEE International Geosciences and Remote Sensing Symposium, 2012: 4672-4675.

- [4] 王祥,任义方,李勋,等.FY-3C 微波温度计资料的台风 "威马逊"垂直结构研究[J].遥感学报,2016,20(6): 1328-1334.
- [5] HE J Y, ZHANG S W, WANG Z Z. The retrievals and analysis of clear-sky water vapor density in the Arctic regions from MWHS measurements on FY-3A satellite [J]. Radio Science, 2016, 47(2):1-13.
- [6]张瑜,张升伟,王振占,等.FY-3卫星大气湿度微波探测技术发展[J].上海航天,2017,34(4):52-61.
- [7]程红,郑悦,孙文邦.FY-3气象卫星微波水汽三维可视 化及其在强天气监测中的应用[J].国土资源遥感, 2014,26(1):139-143.
- [8] 洗智鹏.FY-3C微波观测资料的全天候同化技术及其 在台风预报中的应用[D].成都:成都信息工程大学, 2019.
- [9] 王树志,朱光武,白伟华,等.FY3C-GNOS首次实现北 斗掩星探测[J].物理学报,2015(8):89301-089301.
- [10] HEALY S. The use of the GPS radio occultation reflection flag for NWP applications, ROM SAF report [R/OL]. [2021-01-25]. https://www.romsaf.org/ general-documents/rsr/rsr_22.pdf.
- [11] 贺秋瑞,王振占,何杰颖.基于FY-3C-MWHTS资料 的海洋晴空大气温湿廓线反演方法研究[J].电波科学 学报,2016,31(4):772-778.
- [12] 毕研盟,廖蜜,张鹏,等.应用一维变分法反演GPS掩 星大气温湿廓线[J].物理学报,2013,62(15):159301.
- [13] 王也英,符养,杜晓勇,等.GNSS掩星反演大气温度廓 线对仪器误差敏感性仿真研究[C]//中国气象学会 2006年年会.北京:中国气象学会,2006:1-9.
- [14] 王鑫, 吕达仁, 薛震刚. GNSS 掩星中大气水汽的非线 性反演[J]. 地球物理学报, 2005, 48(1): 32-38.
- [15] 李森,贾光军.GNSS技术下北京7·21暴雨水汽含量反 演分析[J].测绘通报,2018(6):78-81,97.
- [16] 杨忠东,张鹏,谷松岩,等.FY-3卫星应用和发展[J]. 上海航天,2017,34(4):8-19.