引用本文:袁静,罗亮洁,翁艺航,宋志天,许冲.基于HOSVD局部重组的利噪抑噪经验模式分解及应用[J].上海航天,2022,39(6):51-58.
【打印本页】   【下载PDF全文】     
本文已被:浏览 325次   下载 325
分享到: 微信 更多
基于HOSVD局部重组的利噪抑噪经验模式分解及应用
袁静1,罗亮洁1,翁艺航2,宋志天1,许冲1
1.上海理工大学 机械工程学院,上海 200093;2.上海航天电子通讯设备研究所,上海 201109
摘要:
及时准确地识别航天机构萌生和发展的损伤故障特征信息,可为机构故障诊断评估、科学任务调整以及未来在轨维修提供科学决策依据。集成噪声重构经验模式分解(ENEMD)及其衍生方法都是基于噪声利用机制以原信号中估计噪声改善模式混淆并实现信号降噪。然而,该方法中奇异值拐点难以获取、阈值处理中噪声不连续等带来的噪声估计偏差,将降低微弱特征提取准确性。为此,提出一种基于高阶奇异值分解(HOSVD)局部重组的噪声估计技术。研究基于滑动窗截断和Hankel矩阵相结合的张量构建,然后将奇异值曲率谱上的最大峰值点作为合理奇异阶,最后根据选取的奇异阶重构张量分解模型得到所需的估计噪声分量。在此基础上,将HOSVD局部重组引入ENEMD方法中,提出利噪抑噪经验模式分解方法。该方法可进一步提高微弱噪声估计精确度,实现对航天机构损伤微弱特征的增强提取。仿真分析和某航天轴承试验案例验证了该方法在损伤微弱特征提取和识别上具有实用性与有效性。
(1.School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093,China;2.Shanghai Aerospace Electronic Communication Equipment Institute, Shanghai 201109, China)

分享按钮