摘要: |
针对复合材料栓接结构(CBJ)多源装配要素耦合作用下挤压极限预测难题及传统数值模拟效率低下等问题,提出一种基于Vision Transformer(VIT)框架的挤压极限快速预测方法。通过融合装配过程中几何形变参数与物理性能参数,构建多源装配参数空间与挤压极限的非线性映射模型。首先,针对复材栓接结构装配过程的几何参量和性能参量进行分析与建模;其次,创新开发基于VIT架构的CBJ-VIT深度学习网络,采用多头自注意力机制实现多模态装配数据特征融合;最后,以航天薄壁结构复合材料栓接装配体为研究对象进行了实例验证。实验表明:CBJ-VIT模型预测结果与有限元分析结果高度一致,单次预测耗时从传统数值模拟的12.0 h降至8.1 s。在定性和定量评价中,该模型相较传统非图像数据处理方法预测精度提升85.02%,较非VIT架构模型精度提高76.24%。 |
(1.Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240, China;2.Shanghai Aerospace Equipment Manufacturing Co., Ltd., Shanghai 200245, China)
|